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Abstract

We consider a series of numerical examples and compare several algorithms for estimation of
coefficients in differential equation models. Unconstrained, constrained and Tikhonov regulariza-
tion methods are tested for the behavior with regard to both convergence (of approximation meth-
ods for the states and parameters) and stability (continuity of the estimates obtained with respect

to perturbations in the data or observed states).
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Introduction

7

In [1], [2] Banks et al. describe an algorithm for solving a two dimensional version of the

T )

parameter identification problem for

. (1) D(gDu) = f, x e [0,1],
L)
where q is an unknown to be chosen from some given parameter set Q, fis assumed known, and
\l
:- observations 1 are given for u=u(g). Here D = a/a « While in [1], [2] one replaces D with an .
) y
~ . . . . . . . . . .
) appropriate 2-dimensional gradient operator. The algorithm given in [1], [2] is based on spline 4
approximations uN, qM € QM for both the states u and unknown parameters q and a least o
. .
- squares criterion y
.\ )
D -0 1 9
!\ - 2
~ (2) Jig = 5' | u(@)-u] “dx »
- 0 .
X .
':_ A convergence theory (as the dimensions of the approximating spline spaces increase i.e., N ~ e, .
- :
:: M - ) is given in [1] where one may use either linear or cubic splines for the state approxima- .
N A
~ tions and cubic splines for the parameter approximations. An essential feature of these particular
x. h
Le -
j: convergence proofs is that the admissible parameter set Q and its approximations QM lie in some .
- .
- compact subset of C[0,1]. This same compactness assumption plays a fundamental role in proving :
- stability ( e.g., continuity of the inverse of the mapping from the parameter estimates to the ;
<
-._ observations or data) as is discussed in [3], for example. As we shall seek to demonstrate in this )
w .
\ report, it so happens that this compactness is also important in computational aspects of the X
algorithms, i
" .
Tl “
~ Perhaps the most direct way to interpret the compactness requirement is in terms of con- -
- 5
) straints on the parameters. For example, in the computations reported herein, we imposed com- ’
\:I' pactness in C[0,1] by putting upper and lower bounds on the function values as well as an upper .
4 .
= bound on the absolute values of the slope of the functions. The results presented in this paper ;
’
’

illustrate the apparent necessity in many examples of including such a compactness constraint in

- . -.' ." --' -" \“ .' '~“ A.‘ .. ." ..' ..' - .. - -" AR 4_- . L
M, A

R L NN A N
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computational algorithms. Examples are given below where both stability and convergence prop-
erties are as expected whenever a constrained estimation procedure is employed whereas instabil-
ity and divergence is in evidence when unconstrained techniques are used. It is safe to speculate
that similar behavior occurs in problems with parabolic and hyperbolic systems as well as elliptic.
In our own work and in that reported in the literature - e.g. see Yoon and Yeh [7], one sometimes
encounters severe problems with oscillations in the estimates for q as one pushes the algorithms
for increased accuracy in the parameter estimates. As the examples in this report demonstrate,

these difficulties can to some extent be alleviated by imposition of compactness constraints.

An alternative but essentially theoretically equivalent approach involves the use of Tikhonov
regularization as formulated by Kravaris and Seinfeld in [5). One restricts the parameter set to
Qg = Q with Qg compactly imbedded in Q and then meodifies the original least squares criterion J
to minimize J g = J+ gla] 12{ where ||| R is the norm in QR and § is a regularization parame-
ter. Thus minimizing sequences for J[3 are bounded in QR and hence compact in Q; this 1s, in some
sense, roughly equivalent to minimizing J over a restriction of @ which is compact even though the
minimization of J 8 only produces (hopefully) an approximation to the minimizer for the original
criterion J. In the cases considered below, we use QR =H' while Q=C (which corresponds to

A=C1 and R =H’ in the notation of [5]).

As we shall see below, each approach has inherent difficu!' _s in choosing related imbedding
parameters: in the first, the estimates produced are sensitive to the constraints (the bound L on
the derivatives of the parameters in the computations summarized in this report) while the esti-

mates produced using regularization are quite sensitive to the regularization parameter §.

In our calculations we have attempted to compare the spline based algorithms on a number of
examples for three cases: the unconstrained minimization of J; the constrained minimization of J;

and unconstrained minimization of a regularized criterion J g

We briefly outline the algorithms we have used, deferring some of the details to Appendices.
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!
A
s The Estimation Algorithms
't
A
) The methods we illustrate here are based on linear spline approximations for the states u in
"
::\ {1) as well as for the parameter q. Full details of the approximation schemes are given elsewhere
\
)
X (e.g. see [1], [2] and some of the references contained therein). We consider (1) in weak form and
use the approximate equations
. (3) <qDy,Dg;> + <fp;> = 0, i=1,..,N-1
}‘-i where ¢, are the N-1 spline basis elements
) x — (i-1)/N, xe [ (i-D/N, /N )
5 (4) $;x) = G+1/N-x, xe [ VN, (i+1/N ) :
-
» 0 otherwise. K
N
?
- The aim is to find an approximate estimate of q, b
< M+1 :
M _
> j= 1
—
o where the j are the restrictions to [0,1] of the basis elements
"
b x — (-2)/M, xe [-2)/M, (j-1)/M) ;
o™, -
N (6) yix) = M-x, xe[ -D/M, j/M)
0 otherwise.
- "
f—: These spline basis elements are not normalised to have a maximum value of one. In the
n unnormalised form the slopes are plus and minus one, which makes it very easy to express con-
;‘Z straints on the slope as the difference between the coefficients of successive basis elements. with-
-\:
:-:- out any scaling factors involving N or M.
N \
o
.
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Given an estimate qM and substituting it into (3) we can solve for the corresponding uN,

where
N-1
(7) W o= Y o,

i=

M

Thus u] is a function of g™, i.e. uNqM) (see Appendix B).

The estimation algorithms estimate q by optimizing over qM in a specified subset of C[0.1]

the functional

1
(8) INgM) = j | uNgM)-a| ? dx
0

The Unconstrained Algorithm

In this algorithm the functional is taken to be :
1
T ~
(9) Ng"y = 5 | uNgM-a) % ax
0

This functional was optimized using the reduced gradient algorithm (Appendix A), without impos-

Ing any constraints.

The Constrained Algorithm

This algorithm is similar to the unconstrained algorithm, but the estimates, qM, are constrained to

a compact subset of C[0,1]. A suitable compact subset of C[0,1] is the set of bounded functions

M

with bounded derivative almost everywhere, so the constraints imposed on g were | DqMI <L,

M

and 0.5=<q " =<10.0. The functional (9) was minimized using the reduced gradient algorithm

(Appendix A) with these constraints.
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The bound on the absolute value of the derivative is the parameter L. The appropriate value
of this parameter to be used must also be estimated, either from apriori knowledge about the
parameter q. or by looking at the behavior of the estimates as the constraints are eased, i.e.. L is

increased.

The constraint that the function be bounded is never significant in the work presented in this

paper; however as we shall see, the results are quite sensitive to the derivative bound L.

Tikhonov Regularization

Tikhonov regularization is one method which has been proposed [5] to prevent the oscillations in

the estimates. The estimation problem is changed by optimizing over a different functional

N

JrII(qM), where :

(10) Ha™ = ™ + 1M,
and
1
(11) aNgM) = j | N @M)-5] * dx
0
1
(12) on“a =aj. |qM|2dx+‘s‘ |DqM|2dx
0 0

This functional was mimimized using the reduced gradient algorithm (Appendix A) without

imposing any constraints.

As we have indicated, the addition of g | qMI a

essentially constrains the estimates to a com-
pact subset of the estimation space, but it also creates some bias in the estimate. In the limit as

N, M - = one cannot expect to converge to the true parameter unless § - 0 as Nand M - =

LRI

e vamrs 3 1
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The choice of 8 and a is somewhat arbitary, similar to the problem of choosing L in the con-

strained algorithm. This problem is discussed in a later section.
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"Data” For The Algorithm &
b x
]
Throughout this work we assume that we know the functions u,q and f as continuous func-
’ ) v
tions of x. That is, in the test examples, we are given (independent of the approximation indices N 3
e N
:' and M) values for x~u(x) (though possibly with some error), not just a finite dimensional approxi- p
1) ~-

mation to it. Thus the least squares functional (9) is evaluated using an infinite dimensional value

.

for 1. We do not look at the effect of knowing only a finite dimensional approximation to u, as

would be the case if u were observed only for some values of x and then an interpolated function

|ENEMER

R 9
were used for the observations u. %
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The Error Measure: L2 vs L”

In some of the results presented in this paper we have looked at the L™ norm of the estimate

. 2 .
error. We could also have used the L norm of the estimate error.

. . . . 2 .
It is possible to have convergence of an estimate in the L™ norm but not in the L™ norm but
. . . 2
not visa versa, of course. However in the examples studied here the L™ norm of the error has
behaved similarly to the L™ norm. The oscillations which have developed have not tended to occur

s 2
over a shorter length as their height increases, thus the L™ and L° norms of the error have

. ).
increased together. T
On those figures which show the changes in estimate error with iteration number both the L -

and L* norms of the estimate errors are given.
e
e
5

¢ 8 o =
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o Examples

The following examples were used in testing the algorithms. For examples 2 through 5, f
tends to infinity near x=0, and thus the calculation (see Appendix C) of F, (=<f,¢, >) using .
Simpson’s rule cannot be expected to be accurate. Therefore, for these examples F, was evaluated

using its analytic expression.

~ Example 1

(13) q = 2+x xe[0,1/3}

8/3-x xe[1/3, 1]

(14) u sin{r x)

L4
Ol
e e

-8,

Example 2

2+x, xe[0,1/3)

(15) q = 8/3-x, xe[1/3,2/3) 4

4/3+x, xe [2/3,1]

(16) u=yx(l-yx ;

LN
Pl

FT °.

Example 3

Ry
Fd

7.

2 + 2*x, xe([0,1/3)

20 -":':"

(17) q = 10/8 - 2*x, xe[1/3,2/3)
2/3 + 2*x, xe [2/3,1]

(18) u=yx(1-yx)

ENNNY

) l“l‘.l"'.}'.‘.':":"u I

A

>
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Example 4

(19) q = 2, xe[0,1]

0 (20) u=yx({1-yx

Example 5

b

g Y

2+x, xe [0,1/3) j

(21) q = -3*x” +3*x+5/3, xe[1/3,2/3)

-y
'l

4/3 +x, xe[2/3,1]

-« e e
v 'y
AL

(22) u=yx (1 —yx) !

-
4 s
a # 2

"y

M

The initial guess for q

,

MONMOMNG

.
P IR

s

The initial guess for q(x) in ail Examples was q o (x)= 1.
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X ,
X The Constrained versus Unconstrained Algorithms .
< :
In general constraints are necessary for the estimation algorithm to work. We first compare

\ . . . . .

v the two algorithms taking the constraint parameter L to be one, i.e. we require that the absolute !

W value of the slope of the estimates be less than or equal to one. \

[ ]
For Example 1 both algorithms perform similarly for N and M of comparable magnitude, but
»

" as M is increased only the estimates given by the constrained algorithm are accurate. The esti-

". mate given by the unconstrained algorithm develops oscillations (Fig 1 - Fig 4).
< These oscillations are reduced as N is increased, but for the algorithm to perform satisfacto- :
b .
% rily at low N (a case of importance in actual applications of the method to more complex problems) !
-,

. the constraints are essential. z
[ {
N The situation is much more dramatic with u taken as y/x(1—+/x), where u is a much more b
- : f
o sharply curving function near x=0 and hence much harder to approximate with ul\‘ when N is .

ph
" small. For N=8 the constrained estimate shows little detail but does give an idea of the mean ;

o~ ,

t:’ value of the true estimate (Fig 5). The unconstrained estimate is completely wild and gives no {
-‘ »

e useful information (Fig 6).

- That the unconstrained estimate is so bad is not the result of ill choosen convergence criteria. y

X The best estimate, found using the knowledge of the true q is shown in Fig 7. The estimate using .

much weaker convergence criteria is shown in Fig 8. Neither give much information about the

-
~ true q.

L ‘. =
X )
N Figures 9 — 11 show the behavior of the unconstrained estimate as N is increased. For N=96 .
T (Fig 11) the unconstrained estimate is good with only small oscillations at each end, and shows a '

p- reasonably steady improvement as J decreases, i.e. is insensitive to the convergence criteria used. .

L. :

Y. compared to the estimate for N=16 M= 16 (Fig 9) which deteriorates as you push the cost (J) to
L ¢

, . 2 . .

3 lower values (see the graphs on Figures 9 — 11 of L” and L° vs iterations). N

Z :
'I . - .-t - - .= ot - cm T E"m"E "m" . . :
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12

On the other hand the constrained algorithm behaves well for all the values of N (Fig 12 ~

‘. .l .I .x ..l .I ‘l ~

Fig 14) and is insensitive to when you stop the iterations even for the N=8 M =15 case. (Fig 5). [t
also provides consistently better estimates with far fewer iterations even when N=96, although
the number of iterations involved in finding the unconstrained estimate could be reduced consider-

ably by using a better unconstrained optimization algorithm than the reduced gradient method.

When used with no constraints the reduced gradient method is just a gradient method in a space

“r >
s

i

s

isomorphic to the estimate space and will not, in general, perform any better than the normal

TeTITAT N TR F P CEEEY VT TSN L\ Ty Y

EaiS
s
Pyl iy

gradient method.
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Finding an Appropriate Value for L

In the previous section we choose the constraint parameter L to be one, which was the slope
of the true parameter. In general the maximum slope of the true parameter will not be known
exactly, but must be estimated. Figure 15 shows the behavior of the estimate, qM, for Example 2
as L is increased. As the constraints are eased, the estimate approaches the true parameter
(graphed with a dashed line here and in subsequent figures), then as the constraints are eased
further the estimates develop the oscillations characteristic of the unconstrained algorithm. From
the graph the best value of L can be seen, provided you have some apriori knowledge of the oscil-

lations which are present in the true parameter.

These examples are slightly artificial in that the slope of q(x) is always one. thus there is a
value of L which is exactly the true magnitude of the slope everywhere. This is not the case for
Example 5 which starts and finishes with slope one, but is parabolic for the middle third. Figure
16 shows the change in estimates for this example as L is increased, while Figure 17 shows the
change in estimates as M is increased. As can be seen the behavior is similar even though the

constraints are not exact everywhere.
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4

2

:s Finding Appropriate Values for ¢ and §
A .

[

) Some discusion of the problem of finding a suitable regularization parameter § is given in {5].
!
_: We found a suitable § by trying a wide range of values. Figure 18 shows the estimates for vari-

ous values of 8. It can be seen that as § is decreased the estimates converge towards the true
]
™
answer znd then start to develop the oscillations typical of the unconstrained method. From the

-'.: graph the best value of § can be seen, without knowing the true parameter. provided some

- assumptions are made about the sort of oscillations that are present in the true parameter.

B Figure 19 shows the L norm of the error versus § for several values of . Note that the

,

- estimate is much less sensitive to the value of § as g is decreased. Reducing a has the effect of
."- . e . .

% limiting the slope of the estimate more than the absolute value of the function.

N For the work in this paper, comparing the various algorithms, we used our knowledge of the
- true q to choose a suitable value of 3.
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34
The Tikhonov versus Constrained Estimation Algorithms

For low N the behavior of the Tikhonov estimation algorithm is similar to that of the con-
strained algorithm. For Example 2 both are stable as M is increased (Fig 20! and give similar
estimates, provided 8, a and L are suitable values. This is in contrast to the unconstrained esti-
mates, which tend to develop oscillations as M is increased. However with low N both algorithms

give an estimate with no real detail (Figs 21 and 22).

As N is increased while holding M fixed the estimates for all three algorithms improve (Fig
23). however the constrained algorithm performs best, while the Tikhonov algorithm tends to pro-

duce a flattened estimate (Fig 24).

The bias in the Tikhonov method, evidenced by an estimate which is somewhat flatter than
the true parameter, is more marked the more strongly varving qM 1s. Figure 25 shows the
improvement in the estimate as N is increased for Example 3. The constrained algorithm performs
much better than the Tikhonov algorithm which produces a badly biased estimate, even for the
best 3, chosen knowing the true parameter. When § is reduced. to reduce the bias, oscillations

develop in the estimate before it gets near to the true parameter (Fig 26).

The constrained estimation algorithm does not have this problem. As L is increased the esti-

mates come close to the true parameter and only then develop oscillations (Fig 27).

For a very flat function the Tikhonov method works well. The parameter g in Example 4 is
Just a constant function. As f§ is decreased, with sufficiently large N, the Tikhonov estimates con-
verge to the true parameter and only then start to develop oscillations as g is decreased further

(Fig 28).

For this flat function the constrained algorithm also works well, if given much tighter con-

straints than in the previous examples. The estimates for various values of L are shown in Figure

29.
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The Stability of the Estimates With Perturbations of U

To test the stability of our algorithms with respect to noise in the data, we took the true u,q

and f in Example 2, but perturbed u to produce the data ﬁ=up in the cost criterion J. We used a

perturbation of the form

up(x) = u(x) + px)/K

where p(x) is the perturbing function, and K determines the size of the perturbation. As K is

increased up(x) - u(x). We used two perturbation functions:

(a) pl(x) =x(1-x)

(b) pylx)=1

Note that p;(x) satisfies the same boundary conditions as u while po(x) does not.

The unconstrained, constrained and Tikhonov estimates for several values of K with pertur-

bation function p,(x) and N=8 and M=15 are shown in Figures 30 - 32. With the constrained

and Tikhonov algorithms the estimates improve steadily as the error in the input data, u, is

reduced, while the unconstrained estimates are bad even with the exact data. The L™ norm of the

errors in the final estimates versus K for N=8 M=15, N=16 M=16 and N=64 M =16 for both

perturbations are shown in Figures 33 through 38. Figure 33 also shows the results for the

unconstrained algorithm when weaker convergence criteria are used.

For all the values of N the behavior of the constrained and Tikhonov methods are similar,

with the estimate improving steadily as u_(x) - u(x), the true solution.

P

For small N, the unconstrained estimates actually get worse as u, approaches u(x), and for

P

all perturbations these estimates are worse than the initial guess, which has an error in the L*

norm of 4/3. For large N the unconstrained estimates are stable with respect to perturbations of

the input data,
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By comparing Figures 35 and 38 it can be seen that perturbation 2, which does not satisfy

oY

the same boundary conditions as u, has a much greater effect on the estimate error.,
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The Convergence Criteria

In finding the estimates the reduced gradient algorithm was run until one of the following

conditions was met:

(a) the sequences qI‘ilI and J; both converged, where x; was said to have converged if :

(i) Hxl—xl_5n/nxln = 10.5=e
-14

or (ll) " xi—xi.;—)n = 10

where | xl] is the L norm squared if x is qM and is just J(qM) if x is J(qM).
(b) the number of iterations exceeeded 999 (or in some cases 9999)

In several of the examples, especially unconstrained examples, the best estimate does not
occur when J is miniinized. The convergence criteria used in the work for this paper were very
tight, and it is possible that in using such tight criteria the optimization of J was taken too far.
Thus the oscillations seen in the above examples could be a manifestation of numerical inaccura-
cies which became significant when reductions in the cost J at each stage of the optimization

algorithm were comparable to the error in the evaluation of J.

To check this effect several of the examples where the estimates do deteriorate significantly

as J is reduced were rerun with the following weaker convergence criteria.

The reduced gradient algorithm was run until one of the following conditions was met:

(a) the sequences ql\i’I and J; both converged, where x; was said to have converged if :
. -2 _
(1) Ixi_xi-5I/| xll =< 10 “=¢
or (ii) Ixi—xi_5n < 10-8
where | | is as described above.

(b) the number of iterations exceeeded 999
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"
IN .
: Figures 39 through 41 show the results. In general the estimates are slightly better but still ‘
‘
ol
A show the same defects, just not as highly developed. Even using the knowledge of the true param-
- eter to find the best estimate (best meaning the estimate in the sequence with the smaliest error
S k
pY. in the L™ norm) does not produce a good estimate, just one with the same faults at an carlier X
L~ \
N stage. We can therefore conclude that the convergence criteria used here, which are stricter than N
W would be used if computing time were significant, are not producing resulits with errors due to

numerical inaccuracies. Rather the deficiencies in the estimates are true manifestations of algor-

ithm weaknesses.
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Conclusions -

The work in this paper demonstrates severe problems in some instances with using an
unconstrained algorithm to estimate the parameter q. When modified, either by regularizing the
problem using Tikhonov regularization or by constraining the estimate set as-in-thispaper, the

algorithm does give good estimates.

Unlike the unconstrained algorithm, both the Tikhonov and constrained algorithms are stable
with respect to increasing M while holding N fixed. However as N is increased the estimates from
the Tikhonov algorithm do not improve as much as do those of the constrained algorithm. The
Tikhonov estimates are biased by the regularization of the cost functional, and never show all the

detail of q when q has significant variation.

Both the constrained and Tikhonov estimation algorithms are stable with respect w system-

atic errors in the input data, while, except when N is large, the unconstrained algorithm fails to 1

v v

give good results on even the exact data.

4

&

3

For both the Tikhonov and constrained algorithms there are parameters which affect the -y

4

o . . . . . N
algorithm’s performance. For the constrained algorithm suitable constraints must be found while .‘1

for the Tikhonov algorithm suitable values of ; andr (541 must be found. The constrained algorithm
has the advantage that the constraints used here, i.e. limits on the slope of q, have an obvious
meaning, and so may well be known in advance. In the Tikhonov algorithm 5 and @ have no
obvious meaning. They must be suggested by looking at the change in the estimate behavior as § |
and g change, and perhaps using some apriori knowledge about the shape of q to choose values of

B and a that give an estimate that is neither too flat, nor too oscillatory.
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3

Appendix A The Reduced Gradient Optimization Algorithm

S,

5
Faba

[ S ¥

h

For each M, qM is represented as a linear combination of linear splines. The set of such

functions is a subspace of C[0,1] which is isomorphic to R M+ 1. The bounded derivative condition

in C[0.1] becomes a condition on the difference between successive coefficients in R M+ 1, le.
| Pj+ l—pjl must be buunded. The condition that the function be bounded becomes a condition on

the values of the individual coefficients, i.e. | pj‘ must be bounded.

Thus the minimization is over a subset of R M 1, this subset being defined by a set of con-
straint equations. To find the minimum subject to these constraints the reduced gradient algorithm

[6]) was used.

In the reduced gradient algorithm the coefficients of qM are transformed by a linear transfor-
mation to give coefficients with respect to a new (in general, nonorthogonal) coordinate system in
which the constraints are rectangular. The minimum is then found by a modified gradient algor-
ithm. At each iteration there is a linear search, the direction of which is given by the gradient of
J (qM), with respect to the new coordinate system, modified by setting to zero any components

which would cause the linear search to violate a constraint.

The reduced gradient algorithm was also used when there were no constraints, so the results

g

could be compared with the results for the constrained case. Although there were no constraints y
.l

the coefficients were still transformed using the same linear transformation as for the constrained K
:i:

case. However in this case the linear searches were in the direction of the unmodified gradient :
Kl

vector, there being no constraints to violate. -
2

A

In both the constrained and unconstrained cases a diagonal search direction, i.e. ql\id—ql\iq_l, [

=

the direction given by the difference between the two previous estimates of q, was used whenever )
'l

(a) the dot product of the two previous improvement vectors was negative, i.e.

e

—qhill-l)'(qhid-l'ql\i}l-z)<0’

and (b) neither qhi'[ nor qhi/l.l were the result of a diagonal step.
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Appendix B Finding uN as a function of qM

In this section the tensor summation notation is used, i.e. when an index appears as both a

subscript and a superscript in a product term it represents the sum of the product over the

repeated index.

Substituting (5) and (7) into (3) we obtain

M+1  N-1
(23) < T py; 2 . 0; D¢, Dgy > + <f,9,,> = 0, k=1,..,N-1
J:. ):
or
M+1 N-1
2 . 2 . pjoi<v; Dg;, Dg) > + Fy =0, k=1,..,N-1
J: l:

which is equivalent to
ij -
p_]NIkol + Fk =0
where

(24) <f¢)>

.
Lo
I

(25) M, <y; Dg;. 0>

0

p/N
‘s‘ dx = —IJ i=k+1=por k=i+1=p
(p- 1)/N

i+ 1)/N i i
) J(nnm SAT N 1

0 otherwise.

Thus Mli(j are symmetric positive definite tridiagonal matrices for each j. So Ali( =p leiij is

also a symmetric tridiagonal matrix, and is positive definite if p j > 0 for all ).

:
a
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N
h Thus
~ .
N (26) Ajo; + F, =0, k=1,..,N-1
i has a unique solution.
‘I
o
I\ .
R The matrix Af{, being an n x n symmetric and tridiagonal matrix, has an
“
i LDLt—decomposition where L is lower triangular with one’s on the diagonal and one non-zero
:j lower diagonal and D is diagonal ({4] with DLt=U).
%.4
N
; i.e.
=1, i=j, 1<isn
(27) Lij = u; j=i-1, 2=isn
= 0, otherwise.
=0, otherwise.

Because of the form of Mij, Ai has the following special form :
k* 2k €

= Xt X4 05k

(29) AL =- X, i=k+1
= - Xk, i=k-1

where

(30) X; = pjf

With this form y; and u; are given by :

1 = XXy
(31) 7i = Ca) / C(i-1) 2<isn

where C(r) is the sum of the r+ 1 products of possible combinations of r I~} 's out of the first r+1

HsG=1..r+1).

e.g. €2 = N +HH+1j1}
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65
Proof

Substituting the elements of All( into the equations for the LU decomposition of a general tri-
diagonal matrix [4],

the values of 4, and u; are given by :

(32) vy = Xy+X,
, 2 _

Assume (31) is true for some i, then using (33)
(35) yir1 =  Kpq1+Xp9) - Xipp  CG-1/CGH)
= Ci+1)/CH)

so (31) is also true for i+ 1. (81) is true for i=2 so by induction it is true for 2<i<n.

The value of C(i) is easily calculated from C(i—1) so the calculation of y; and u; and hence of
the LDL'- decomposition can be done very quickly and easily. However C(i) grows (or declines)
exponentially with i. In a numerical implementation this problem can be solved by calculating
C(i)/ui where y is the geometric mean of the L. In the programs used here u was approximated
by taking the geometric mean of 1, IINT(N /2) and Ip.

¥

Given the LDLt—decomposition of Ali( equation (26) can be solved to give uN as a function of

qM by simple back substitution.

“w e I P e R o o, - P et . K
"n‘ll.llift" % '.'."- > .'." ~° ‘-f’i’ '\':'—I'- -~ it (‘. =~
A . Lol " g

- l.' &

Tapt \-’sf,'l, f\f‘._-'v',‘-'“-f‘_.a'\'.“.‘f,.'.";a N .:(\; .; "‘,,—.:, "._: ..‘: ..:‘-_:_.\'..\'
9 ! » ST R N N

% B 1-“_ L

e v SR T N W
- L

WY v A

e

cxte s
Ty »

RPN

= 4

>y
L.



A

"

[y
£

g

v . . e .
T T e e S S R R L AR
LGN A ICAT A N SN A A N R IO, (L PR UR S i Oy

Appendix C Implementation Details

The evaluation of integrals by Simpson’s Rule

The quantities J(qM), F, = <f,¢;> and IqM| , were evaluated using Simpson's rule with
N1 subdivisions of the interval [0,1] for the first two and N2 subdivsions for the last one. The
quantity IqMI o Was evaluated by sampling the difference at the same N2 points used in the

Simpson’s rule evaluation of the L, norm.

N1 and N2 were always at least twice N and M respectively. Only the value of N1 affects
the algorithm. The accuracy of the integration will be most sensitve to changes in N1 when one of
N or M is not a multiple of the other. In this case the product f - ¢; has a discontinuous derivative
at the points i/N and j/M, and the j/M points are not, in general, included in the sum for the

Simpson’s rule evaluation of the integral of the product f - ¢

The value of N2 does not affect the convergence of the algorithm, it affects only the evalua-
tion of the L, and L_ norms, which were used for informational purposes and for determining

convergence but not in the calculation of the successive steps of the optimization.
The implementation of the algorithms

The algorithms were implemented in FORTRAN on an IBM3081, Double precision arithmetic

was used throughout.
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